

Phase Jump due to Partial Reflection of Irregular Water Waves at Steep Slopes

Supplement to:

"Wave Resonances Detected in a Wave Tank and in the Field", 5th Int. Symposium WAVES 2005, Madrid, Spain, Paper 134

> Prof. Dr.-Ing. Fritz Büsching Bielefeld University of Applied Sciences Fluid Dynamics Laboratory Minden, Germany

> > urn:nbn:de:0066-201011165

Scope of Presentation

- Statement: The process of wave breaking at slopes 1:3≤1:n≤1:2 is inextricably linked with the simultaneous formation of a reflected wave and a wave of transmission.
 Superimposition of incident and reflected waves results in the formation of a partial clapotis comprising of a phase jump.
- Analogue: Fresnel's Equations describing reflection and transmission of light at uniform planar interfaces.
- Reflection coefficients $C_r = f(H_r/H_i, \Delta \phi) < 0$.

Partial standing waves breaking on a slope with reference to the point IP of the still water level intersecting the slope

Main topic: Influence of a phase shift $\Delta \phi$ on breakers interacting with sloping structures

Measurements of water level deflections quasi synchronously at 91 wave probe stations equally spaced 10 cm.

Tests on the stability of Hollow Cubes

Model scale: 1:5

Slopes: $1: 3 \le 1: n \le 1: 2$

Wave heights up to H = 0.35m

Punging breaker on quasi Smooth Slope

Collapsing breaker on Hollow Cubes

$$\Delta x \approx 0.15m$$

 $C_{r} = -0.16$

Maximum run up

Differences: • extent • phase

$\Delta y \approx 0.40 m$

Run down of collapsing breaker on Hollow Cubes

Run down of plunging breaker on Smooth Slope

Image and the second second

Permeable revetment

Plane revetment

(measured synchronously)

Energy lines resulting from 256 frequency components total frequency range 0.0326 – 1.3997 Hz

$^{\textcircled{I}}$ General properties of **partial standing waves** at a slope

Energy lines of 12 definable partial clapotis waves frequency range 0.4015 – 0.8030 Hz (74 components)

Coastlab 2010, Barcelona

Modified data procession and presentation for slopes 1:2

Hollow Cubes piled up to form a stepped face hollow seawall structure (2-layer-system). Slope: 1:2 Model scale: 1:10

Hollow Cubes with the stem placed at one bottom edge

Modified data procession and presentation for slopes 1:2

Comments:

 At steeper slope 1:2 measurements closer to IP.

 Set of partial clapotis waves identifiable, although <u>re-reflection</u> effect prevented.

 Energy contents of partial clapotis waves piled up with reference to gauge station numbers

Close to IP

- nodes at smooth slope and
- loops at hollow slope.

Monochromatic waves at smooth slopes: Relative node distances a/L with reference to slope angle

Two kinds of standing *transversal* waves (without transmission)

Free end reflection without phase jump (shift) (wave crest reflectet by wave crest)

Known examples:

- Rope waves
- Electromagnetic waves
- Water waves (Clapotis)

Fixed end reflection with phase jump $\Delta \phi = 180^{\circ}$ (wave crest reflectet by wave trough & vice versa)

Known examples:

- Rope waves
- Electromagnetic waves
- Water waves (at a slope?)

incident wave: red

red reflected wave: blue resultant wave: black

Click on the figure to start animation

Animations after Walter Fendt (2003) http://www.walter-fendt.de/ph14d/stwellerefl.htm

Wave breaking combined with partial reflection and transmission (wave moving to the left)

- The existence of a node close to the slope provides evidence of partial reflection with a phase jump.
- Note opposite transmitted and reflected deflections around IP.
- Conservation of momentum: Smaller & slower transmitted wave pulse c_t < c_i combined with negative reflection (wave crest reflected by wave trough & vv)

- The existence of a node close to the slope provides evidence of partial reflection with a phase jump.
- Note opposite transmitted and reflected deflections around IP.
- Conservation of momentum: Smaller & slower transmitted wave pulse c_t < c_i combined with negative reflection (wave crest reflectet by wave trough & vv)

Analogue from light waves: Fresnel's Equations describing reflection and transmission of light at uniform planar interfaces

Partial **reflection and transmission** of a puls travelling to the right from **thinner to thicker** rope diameter.

Further considerations on the positioning of partial standing waves with reference to a sloping structure

Radian

Consequences of phase shifts on reflection coefficients

Wave height ratio: $H_r / H_i = 1.0$

Radian

Consequences of phase shifts on reflection coefficients

Wave height ratio: $H_r / H_i = 0.7$

Consequences of a phase shift on reflection coefficients

Partial Clapotis Envelopes

Reflection coefficients in the range of parameters

 $0.1 \le H_r / H_i \le 1.0$ and phase distances $0^\circ \le \Delta \varphi \le 180^\circ$

Found reflection coefficients attached to parameters

ß

 $0.1 \le H_r / H_i \le 1.0$ and phase distances $0^\circ \le \Delta \varphi \le 180^\circ$

Trivial suggestions on the **joint effect of reflection**, **transmission and dissipation** of breaking waves at a slope

 Verify current findings in a natural scale: Specify phase shifts for longer waves and less inclined slopes.

• Include the phase difference $\Delta \varphi$ in the presentations of reflection coefficients and of types of breakers in addition to the Iribarren nr IR $\xi = \tan \alpha / \sqrt{s}$

 Standardize the application of composite response spectra, in order to obtain spectral coefficients of reflection, transmission and absorption.

Extended version: http://nbn-resolving.de/urn:nbn:de:0066-201008270