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Summary

A wave pulse of transmission originating at the landward side of the initial breaking wave requires the simmltaneous formation of a
reflected wave at the seaward side. According to the conservation of momentum the water level deflection of the reflected wave must be negative.
Superimposition of incident and reflected waves results in the formation of a partial standing wave (partial clapotis) comprising of a phase jump.

For the investigation of partial standing waves at steep sloping structures a special analyzing technique had been adopted. Previons results
on the phenomenon of anomalous dispersion and on frequency dependent reflections are summarized and are supplemented by evaluations on the
excistence of phase jumps between incident and reflected waves: The nodes of superimposing partial clapotis component waves nearest to a smooth
structure are very close to the point of intersection (IP), where the still water level intersects the face of the structure. Such a partial reflection,
assigned by a phase jump of Ap ~ 180 leads to the definition of a negative coefficient of reflection C,= f{H,/H,, Ap) < 0, implying the effect
that a wave crest is reflected by a wave trough and vice versa. Structured (rough) surfaces (like hollow revetments or big hollow blocks) cause
phase differences Ap <180 € between incident and reflected waves together with reflection coefficients ranging between C, < +1,0 and C,>-1,0.
Minimal magnitudes of reflection coefficients C.= f{H,/ H,, Ap) are found for phase differences Ap ~ 90°.

Zusammenfassung

Eine im Verlauf des Wellenbrechvorganges landseitig entstehende Transmissionswelle mit der Phasengeschwindigkeit
¢t < ¢ erfordert aus Griinden der Impulserhaltung seeseitig die gleichzeitige Bildung einer Reflexionswelle mit 6rtlich
negativer Wasserspiegelauslenkung. Die Uberlagerung der anlaufenden mit der reflektierten Welle ergibt eine partielle
Clapotis mit Phasensprung.

Fir die Untersuchung partiell stchender Wellen an steilen Uferbdschungen im ModellmafB3stab 1:5 wurde auf
entsprechende Messungen eine spezielle spektrale Analysetechnik angewandt. Auf dieser Grundlage gewonnene frithere
Ergebnisse zum Phinomen anomaler Dispersion und frequenzabhingiger Reflexion werden zusammengefasst und durch
neue Auswertungen im Hinblick auf das Vorliegen von Phasenspringen erginzt: Die bauwerksnahsten imperfekten
Knoten eines Kollektivs partiell stehender Wellen (Partialwellen) vor glatten Béschungen befinden sich in unmittelbarer
Nihe des Schnittpunktes, den der Ruhewasserspiegel mit der Bdéschungsoberfliche bildet. Fine dementsprechende
pattielle Reflexion mit einem Phasensprung Ag=180° fithrt zur Definition  negativer Reflexionskoeffizienten
C: = f(H./Hji, Ag) < 0 mit der Folge, dass ein Wellenberg als Wellental reflektiert wird und umgekehrt.

Strukturierte (raue) Oberflichen (wie Hohldeckwerke einerseits und groB3volumige Hohlformkérper andererseits)
bewitken Phasendifferenzen A¢ <180° zwischen anlaufenden und reflektierten Wellen mit Reflexionskoeffizienten
zwischen C, < + 1,0 und C,; >-1,0.

Minimale Betrige des Reflexionskoeffizienten C, = f(H,/H;, Ay) ergeben sich fiir die Phasendifferenzen Ag = 90°.
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1. Introduction

In the 1990ies numerous model investigations had been carried out in a wave tank at Bielefeld
University of Applied Sciences (BUAS) in order to demonstrate the hydraulic efficiency of
hollow revetment elements (Hollow Cubes) using a model scale 1:5, see Fig.1. In doing so the
author started from the perception that the mass of water in front of a sloping structure can be
regarded as an oscillating continuum, characterized by different natural frequencies,
according to the actual geometric boundaries.

Fig. 01: Plunging breaker at quasi smooth reference revetment slope (left) and
collapsing breaker at hollow slope structure (right)

In this arrangement the source of excitation is realised in the waves coming from the sea and
the different degrees of freedom are represented — on the one hand - by the reflections
associated with a set of partial standing waves and - on the other hand — by the washing
movement due to run-up and run-down of broken waves on the slope face [1]. Actually it
could be shown that the appropriate interferences on the washing movements not only have
the effect of reducing the wave run-up but also reducing the breaker heights, changing the
breaker type and changing its relative position on the slope face. Contrary to that the present
contribution is oriented a priori on the partial clapotis, namely on the phase difference
between incident and reflected wave occurring in the course of partial reflection at sloping
structures. This subject is important, because erosions at the slope face and scouring at the
foot of coastal structures are due to the interaction of incident and reflected waves. Although
the effect of phase shifting had yet been presumed by Schoemaker und Thijsse (1949) [2],
relatively little attention had been paid on it during the years 1980 to 2000, when the relevant
studies on reflection coefficients C; had been carried out. Sutherland and O’Donoghue (1998)
[4] analyzed the state of knowledge from about 20 references complimenting it by their own
measurements. Using a large experimental data set involving normally incident and obliquely
incident regular and irregular waves, they show that the phase shift y is uniquely determined
by a nondimensional number y3; defined by structure slope tana = 1:m, water depth at the
structure toe d;, wave period T, and angle of incidence O:
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Accordingly neither the wave height nor energy dissipation processes should influence the
phase shift vy.

In total the authors give 2 theoretical linear functions y = f()) for normal wave incidence and
5 experimental power functions y=f(y) and y=f(y3) respectively applying to 2- and 3-
dimensional regular and irregular waves. For instance that one for 3-dimensional irregular
waves reads as follows:

y=—1113-7- ;¥ (2)

Here the point of origin is x = 0 at the structure toe with x increasing toward the shore. This
applies to the very most investigations including those by Kobayashi, Tomasiccho and
Brunone (2000) [14], who analyzed co-located measurements of the free surface elevation and
horizontal velocity.
For the time being, however, relations to the above studies can not be made, because in the
present assessment

e the point IP of the still water level intersecting the slope face is selected as the point of
reference and thus the phase shift here is Ap # vy,

e the investigations are restricted to the 2-dimesional retro-reflection from 2 steep slopes
only,

e contrary to above presumptions essential importance is attached to the interactions
between phase shift and energy dissipation at wave breaking and

e absorption at sloping structures is assumed to be not only represented by a smaller
reflecting wave height H, <H; but also is accompanied by a modified phase shift
between incident and reflected wave.

The summary of the results may be anticipated yet at this point as follows:

At steep plane slopes wave breaking not only causes dissipation and reflection but
transmission also.

Accordingly a phenomenological representation can be described by the following:

In the course of the dissipative wave breaking process a wave pulse of transmission
evolves from the initial incident wave at the landward side, while a reflected wave is
produced at the seaward side at the same time.

The wave pulse of transmission is characterized by a wave height H,< H; and phase
velocity c¢<c;, and the reflected wave height is H, < H; .

In this process it is essential that due to conservation of momentum the positive water
level deflection of the transmitted wave pulse postulates locally a negative water level
deflection at the reflecting wave. Hence, superimposition of incident and reflected waves
results in a partially standing wave comprising of a phase jump. The partial clapotis
node close to IP can be looked upon as a centre of rotation, around which the water level
deflections of the washing movement (run-up — rundown) and those of the partial
standing wave are in opposite phases.

German versions of this publication can be found in [15].



2. Method

The investigations are based on measurements which had been carried out in the BUAS wave
tank. As the method used for spectral data analysis may not be well-established, in the
following the results achieved will be summarized with respect to the topic of reflection at
inclined coastal structures with slopes 1:m = 1:3 and 1:2.

Particular attention is paid, however, on the process of reflection at a smooth inclined slope,
which had been used as a reference slope for the respective investigations, see Fig. 2.
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Fig. 02: Scheme of BUAS Wave Tank (not to scale).

Due to the water depth conditions to be considered in the wave flume, an input wave spectrum
was used similar to those measured near the breaker zone of Sylt Island/North Sea [5]. Hence
in the model input spectrum maximum energy densities are concentrated in the frequency
range 0.48 Hz < f < 0.62Hz.

The actual evaluations refer to the boundary conditions of a smooth slope inclined 1:3 and a
rigid flap type wave generator. In order to favour the development of high energetic
movements in the tank (with wave heights of about 0.35m), in this case, no precautions had
been made to suppress re-reflection from the wave maker. The tests had been carried out
comprising a rather big number of 91 wave probe stations positioned in front of the slope
from station 0.79m to 9.79m, equally spaced 10cm, nearly all over the total length of the wave
tank. The signals from the wave probes were recorded quasi synchronously and were
processed by spectrum analyses confined to a total frequency range 0.03263 < < 1.3997 Hz.
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Fig. 03. Synchronously measured energy spectra at stations 0.79m to 1.79m distant from
IP. In front of a Hollow Revetment (left) and a Plane Revetment Structure (right) at
Slopes 1:3.

As an example Fig.03 shows plots of spectra synchronously taken at 6 different gage
locations, spaced 20cm, in front of the hollow slope and the plane slope respectively. Actually
those composite energy spectra (containing information of incident waves, reflected waves
and re-reflected waves) demonstrate the changes of energy content along the slope in the
range extending from the slope toe (station 1.79m) to the zone of maximum breaker instability
(stations 1.19m to 0.79m).

Due to the fact that the area included in each of the energy spectra (integrated spectrum area,
IA) is proportional to the potential energy at any measuring station, such values were used in
order to describe the distribution of the energy along the wave flume with reference to
different frequency ranges.

In the 3 diagrams attached (Fig.04 to Fig.06) the values of all the integrated spectra IA are
plotted along with the gauge station distance from the slope face, i.e., from the point IP of the
still water level (SWL) intersecting the slope, which is also sketched in relation to the probe
stations at the bottom of Fig.04.
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Fig. 04: Distribution of spectral energy (within the frequency range 0.03 <f<1.4 Hz)
documenting the existence of a partial clapotis in front of the smooth slope 1:3
(red curve).

With respect to the total analyzed frequency range 0.0326Hz < f<1.3997Hz a periodic
feature can be noticed yet in the upper red curve, which belongs to the potential energy data
calculated for the smooth sloping structure in Fig.4.

This feature apparently confirms the existence of a partial standing wave, because the
potential energy of such a wave — contrary to a progressive wave — keeps on location. Its
wave length of about L = 3.65m for instance can be taken from the graph to be equal to the
distance between the first and third minimum of energy.

Although there are some disturbances to be seen in the plot, it will be shown that conclusions
of good quality can be drawn from that data, provided that the total frequency range is
subdivided into a number of smaller frequency ranges and the higher noise frequencies
(f> 0.8Hz) are discarded.

First of all in Fig.05 a respective presentation of all the frequency components separately
(82 spaced Af = 0.00543 Hz) is shown for the frequency range 0.4015Hz < < 0.8409 Hz. The
essential phenomenon to be seen from this graph consists in the fact that obviously there are
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Fig. 05: Energy lines of all the components in the frequency range
0.4015Hz<f<0.8409 Hz .

lines of energy, possessing similar energy distributions in the length expansion, relating to the
distance from the sloping structure (point IP); i.e., they have nearly same distances between
neighbouring energy minima or neighbouring energy maxima respectively and nearly same
phase angles too.

In the course of further data treatment the energy components of such similar neighbouring
frequency ranges had been summed up reducing the number of curves. Thus in the frequency
range of 0.4015Hz < f<0.8030Hz, see Fig.06, 12 curves were found, representing different
component frequency ranges. Hence, the potential energy of the partial clapotis, documented
in Fig.04, can be recognized approximately as the resulting energy from such 12
superimposing partial clapotis waves existing in the wave tank at the same time. In order to
distinguish the resultant partial clapotis from its components in the following the latter shall
be named shortly “partial waves”.

The general properties of such partial waves can be derived from their energy distribution in
the length expansion (energy line) as shown in Fig.07.
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In the lower part of that graph it can be seen that the absolute maximum of energy (denoted
Emaxi) appears closest to the slope and the seaward maxima Epx, Emaxiv ...decrease in
magnitude with the distance increasing from the slope. Vice versa with respect to the curve
minima the energy increases with distance from the slope in the order Einn, Eminii, Emintv - -
Obviously such features correspond rather well to the water level envelopes of a partial
standing wave attenuating with distance from IP, as shown in the upper part of Fig.07.
Differing from the periodical potential energy function of a perfect standing wave (clapotis),
at which the nodes are related to zero values and the loops to maximum values, obviously at
partial standing waves the respective extreme values distinctively deviate from that periodical
function. This feature will be discussed further below in chapter 4 with reference to the
calculation of reflection coefficients C;.

Moreover such deviations allow phenomenological explanations with respect to the water
particle kinematics as indicated in the graph:

The particle movements at phases of the loops may be approximated by ellipses possessing
bigger vertical principle axis and those at the node phases by ellipses possessing bigger
horizontal principle axis. The orbital motions of partial waves approaching the slope may be
described by increasing vertical ellipse axis at the loops and decreasing vertical ellipse axis at
the nodes.

In the following, previous results are summarized based on the existence of the above energy
lines and their properties, on which also will be referred to in the remainder of this paper.

3. Resonant basinoscillations and anomalous dispersion of
frequency components of partial standing waves

A comprehensive report on resonant basin oscillations in the wave tank used, is contained in
publication [8]. Thus its appearance is due to the generation of wave sequences repeatedly
without any precautions to suppress re-reflection from the wave maker.
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The phenomenon of grouping frequency components was shown above in chapter 2. Due to
the fact that the frequency components of the partial waves have nearly equal wave length,
follows that there is an anomalous dispersion property within such wave packets, because the
phase velocity according to ¢ = L'f increases with frequency. It is de/df > 0.

In the upper part of Fig.08 the lengths associated with the 82 energy lines, mentioned above,
are denoted L(AD)(f) (AD = anomalous dispersion), whereas L(ND)(f) (ND = normal
dispersion; dashed line) refers to the classical dispersion relation according to water depth
d = 0.626 m in the wave tank. Thus, both curves can be named Length Spectra. Besides the
mentioned (red) phase velocity spectrum c(AD)(f) also the theoretical phase velocity

spectrum c(ND)(f), derived from @ =g-k-tanh(k-d), is shown in the lower part of the

figure.

Especially because of the stepped structure of L(AD)(f), the author considers the 12 partial
waves to match the different oscillatory modes of the enclosed water body in the tank.

Hence, the combined appearance of resonance and anomalous dispersion, known from
electromagnetic waves, might also be valid in this case.

In order to confirm this statement the author in [8] previously considered a basin with vertical
walls at the front end and at the rear end of a wave tank.

By contrast in the present article, it is shown that the geometry of a basin comprising a
vertical wall at the front end and an inclined wall at the rear end provides the appropriate
boundary conditions for the function of harmonic numbers of basin oscillations n(f), see
Fig.08.

According to the statement, made in the introduction, this function is based on the existence
of a node at the slope face and a loop at the wave maker, see Fig.09.

L/4

fundamental

3L/4
first harmonic
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Fig.09: The first 4 theoretical mode shapes of natural oscillations in a basin confined by
a vertical wall at the front end and an inclined wall at the rear end.
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Natural frequencies of a water volume in a basin comprising of a vertical wall at the front end
and an inclined wall at the rear end can be calculated in using formula (03):
c

f[Hz]=(2n+1) D 3)
where
D = horizontal wall distance according to Fig,09,
¢ = wave celerity and
n = harmonic number.
n = 0 denotes the fundamental oscillation and n = 1, 2, 3 ... are named first, second, third
harmonic etc., Fig.09.

Solving formula (3) with respect to harmonic numbers n[-], yields formula (04):

2-D-f
n(f)f-]==——-05 )
Further applying ¢ =L fyields formula (5)
2-D
n(LI-]1= T_O’S ()

With the horizontal wall distance D = 11.638m (between IP and the hinge of the wave maker)
in formula (4), it is evident in Fig.08 that partial waves actually occurred as harmonics of
ordinal numbers 4 <n <9 in the wave tank. It is to be seen that the function is best for the
partial waves with wave lengths 3.58m and 4.21m, which both carry maximum energies.

4. Reflection coefficients of partial standing waves
and selective reflectionof partial waves

One of the authors previous results [9] consisted in the finding that reflection from a sloping
structure — whether smooth or hollow — strongly depends on the frequencies contained in the
spectrum of gravity waves. Especially the fact that the longer the frequency components, the
more down slope they are reflected (to be seen from Fig.06), had been denoted as a kind of
selective reflection. Such a dependency of course also can be demonstrated by using reflection
coefficients.

The calculation of such reflection coefficients C.;(f) in [3] and [9] formerly had been based on
the structure of Healy’s formula (1953), but contrary to the sums and differences of wave
heights in that formula, here the square roots of the energy extreme values had been used
instead as follows:

C _ \/Emax,i _\/Emin,i
r’l \/Emax,i + \/Emin,i

Where:

Emax,i= maximum energy of contributing components at clapotis loop 1,

Emin,i = minimum energy of contributing components at clapotis node i,

1 = number of clapotis loops or nodes respectively according to Fig.07.

(6)
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There are exemplified plots of the maximum reflection coefficients C,y (referring to Emaxn
and Enminn) to be seen in Fig.10 for smooth and hollow slopes 1:3 respectively.

But also reflection coefficients C,n(x), attenuating with distance from the slope, can be
presented, which can be useful with regard to safety considerations of ships travelling near a
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sloping structure, for instance at the entrance of an harbour. Plots of such reflection
coefficients C;n(x) are to be seen from Fig.11, representing mean values weighted with the
energy content of component frequency ranges. Further information on that is contained in
[9]. The advantage of the above definitions of reflection coefficients is the fact that the
differing mean energy levels in front of the two sloping structures (see Fig.04) are also
considered in the evaluation procedure for the reflection coefficients. In this connection it can
be questioned, whether conventionally calculated reflection coefficients at all can deliver
reliable estimates on wave absorption.

Anyhow, in the present case the mean energy levels of the breaker zone close to the sloping
structure are related roughly 1: 2/3, cf. Fig. 3 and 4. But it has to be considered here that with
respect to the curve, valid for the smooth structure, the absolute maximum could not be
obtained, because the water depth at stations nearer than 0.79m from IP was not sufficient for
measurements to be made. Because this shortcoming is relevant with respect to the relative
positioning of partial waves in front of the smooth and the hollow structure, it was necessary
to consider additionally the results of similar investigations on the steeper slope 1:2, where
measurements could be performed nearer to the slope also.

5. Relative phases of partial standing waves at steep
slopes and resulting wave deformation

Because of data missing in Fig.07 with respect to the breaking kinematics on the slope face,
vague statements are allowed in this context only:

e Energy decreases in upslope direction depending on the type of breaker and on the
slope angle.

e The breaker extends from maximum Loop II and a location near IP.

e Comparing particle movements on the slope to those at a vertical wall, the washing
movement on the slope corresponds to Loop I (directly at the vertical wall face),
although the run-up can be compared better to a broken clapotis.
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Fig.12: Two sets of partial clapotis of lengths L, and L; at a vertical wall and at a
slope 1:m > 1:3 respectively. Vertical wall: dotted lines; Smooth slope: solid lines.
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Further statements, however, can be obtained from the relative positioning of the above set of
partial clapotis waves (partial waves). For this purpose first of all in Fig.12 some general
changes are shown, which occur in the case that a vertical wall is replaced by a sloping
structure steeper than 1:3 [10]: Because of the vertical boundary missing, in those cases the
perfect nodes convert into approximately elliptical flow lines (spiral shaped imperfect nodes),
whose centres are located appreciably nearer to IP than L/4, 3L/4, SL/4 ....

This is shown here for two sets of wave lengths Ly, L at a vertical wall and at a slope
respectively.

In the following, evaluations at first are performed with respect to this feature on the smooth
slope 1:3, based on the relative distances between the partial clapotis energy lines of Fig.06.
Here the longest component partial wave energy line is selected as a reference. This can be
identified in the graph by its Eninn = 0 (nearly zero) at 3m from IP. Hence this kind of
oscillation (comprising frequencies 0.402 < f < 0.423Hz) actually comes rather close to a
perfect clapotis.

Pre-breaking Wave Stage

Distances of Partial Clapotis Nodes_lI (of unbroken waves)

3(Lo-Ly)/4 [m] with Reference to the Longest Partial Clapotis
4.00

+ Experiment (Slope 1:3)
m Theory (Vertical Wall)
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2.00 \\\\
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Fig.13: Distances of partial clapotis nodes_II with reference to the longest partial wave
of length Ly =5.81m.

During the process of wave deformation (at a slope) a pre-breaking wave stage obviously can
be assigned to the position of node II (3L/4 distant from vertical wall (IP)) of the longest
clapotis component. In Fig.06 the respective location (of corresponding minimum energy of
frequency components in the range 0.4015 — 0.4232 Hz) is the one mentioned above (3m from
IP). The corresponding wave length is equal to the distance between E i and Epinry resulting
in approximately Lo = 5.81m. Hence, in this case (of a slope structure) the distance of the
node II from IP is only about 2L/4 (2.91m) instead of 3L/4 (4.36m). The distances from here
to the nodes_II of the remaining component clapotis waves are plotted in Fig.13.

Comparing the results with the respective phase conditions at a vertical wall (theory), it can
be seen that those distances decrease with the component frequency increasing (wave length
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decreasing). This means that in the pre-breaking wave stage the steepening of the resultant
wave is due to the relative upsetting of partial clapotis component envelopes.

Breaking Wave Stage

Measurements could not be performed by using wave gauges on the slope face in the water
depths region of the breaking waves, because of insufficient operational water depth. Hence,
in Fig.06 the loops II (maxima of energy) can be seen for the lower frequency partial wave
only. It can, however, be reasonably assumed that at wave breaking the process of upsetting
partial clapotis components will continue. The loops II of all clapotis components
superimpose in such a way that an asymmetric distribution of energy is produced and stable
surface elevations of the resultant waves can no longer be preserved. As to be seen from
Fig.04 the asymmetry in the energy distribution with respect to the resultant partial clapotis is
preserved also in the seaward wave cycles.

Post-breaking Wave Stage

Distances of Partial Clapotis Nodes_| (of broken waves)

(:L";I(;')M 1 with Reference to the Longest Partial Clapotis
' = Theory (Vertical Wall)
+ Experiment (Slope 1:3)
2.00
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0.00 1.00 2.00 3.00 400 5.00 6.00 7.00
Partial Clapotis Length [m]

Fig.14: Distances of partial clapotis nodes_I with reference to the longest partial clapotis
of length Ly = 5.81m.

Also the nodes_I (at a distance of L/4 from the vertical wall) of course can not be seen
directly in Fig.06. Presuming, however, that partial clapotis lengths are constant on the slope,
the locations of nodes I can be extrapolated in using the measured relative distances of the
nodes_II, shown in Fig.13. Similar to Fig.13 the extrapolated relative distances of clapotis
nodes_I with reference to those at a vertical wall (theory) are plotted in Fig.14. As the vertical
scale is the same as in Fig.13, it is apparent that differences here are much smaller. This is
also an indication that asymmetry changes with the shifting of clapotis components. The
absolute clapotis_I node distances a; from IP, as defined in Fig.12, are shown in Fig.15 and
the relative clapotis_I node distances a;/L; with reference to IP in Fig.16.
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Absolute Clapotis Node_| Distances from IP

aj [m]
2.00 :

m Theory (Vertical Wall)
150 + Experiment (Slope 1:3)
1.00
0.50 1 il

*
0.00 S *
g,__—?——;'"'—‘:" ¥

-0.50
-1.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00
Partial Clapotis Length [m]

Fig.15: Absolute clapotis node_I distances from IP nearest to the slope face.
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0.30
0.25 J—I—l-l o - con =
0.20 + Experiment (Slope 1:3)
0.15 = Theorie (Vertical Wall)
0.10
0.05

TS * rS

0.00
+ /

-0.05 el
-0.10 /{//:'
-0.15 +

-0.20

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00
Partial Clapotis Length [m]

Fig.16: Relative clapotis node_I distances with reference to IP.

It can be seen that the nodes I are shifted the more in the upslope direction, the higher the
partial clapotis frequencies are. The negative values in Fig.15 and Fig.16 are plausible,
because water particle movements extend in the upslope direction beyond IP and thus an
increasing SWL - well known as wave setup - must exist.
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On the other hand the relative shifting of the nodes can also be explained by the kinematics of
the incident waves, whose longer (lower-frequency) components are more effected by the
boundary of the slope (at bigger water depth) than the shorter (higher-frequency) ones.
Anyhow, a position of node I close to the slope can be documented for any partial wave. This
statement holds even for the maximum deviations from IP, because they are negative and thus
on the upslope side.

With respect to the waves resulting from the superimposition of the set of partial waves, it
may be stated, that the breaker steepness, besides increasing wave heights, is due to
decreasing wave lengths too.

The shifting of the nodes by 90° (w/2) onto the slope, however, would be of elementary
importance, because this means a phase jump of 180° between incident and reflected waves,
cf. chapter 6.

In contrast, extrapolating the experimental curve in Fig.16 by the multiple of the maximum
examined wave length, would trend to the limiting value a;/L; = 0.25. Hence, extremely long
waves actually would tend towards the status of a clapotis without a phase jump.

Similar results had been published by the author previously in [10] and for monochromatic
waves also in [3].

Because of a better judgment of the above results for the smooth slope and supposed
deviations for the hollow slope, in the following similar results on slopes 1:m = 1:2 are
included in the analysis. The hollow structure in this case, however, is rather different from
that of Fig.01. As to be seen from Fig. 17, in this case two layers of big hollow cubes had
been piled up in such a way that a stepped structure is formed, see also [11 and 12].

110m

STEPPED
SUBSTRUCTURE
ON FLUME FLOOR e A

GAUGE STATION NUMBERS 01234567 8910M1

Fig.17: Sectional and cut-out views of test structure composed of “Hollow Cubes”.

The results for this structure and for the respective smooth reference slope are contained in
Fig.18. Actually the measuring procedure here was similar to that one used for the slope 1:3,
but the method of presenting the data is different to that one used for Fig.06.

Instead of plotting the data of any partial wave separately, in this case the energy contents of
all partial waves, comprising different component frequency ranges, appear piled up with
reference to the distance from IP. The energy values of each partial wave are marked by
colors to be identified from the inset at the bottom of the graph.

Additionally it has to be mentioned here that truncated wave sequences had been applied in
such a way that the re-reflection effect was excluded from the analyzed data and accordingly
measurements extend about 3m from IP only.

Provided that signal noise of frequencies f > 0.725 Hz is disregarded, (i.e. the upper yellow-
orange areas in both plots) at the smooth slope partial waves can very well be identified by
their extreme values of energy representing loops and nodes respectively.! Moreover the

! The distinct increase of energy within the frequency range 0.6 < £ < 0.68125Hz at station 5 may be traced back to
unknown local wave breaking features not to be discussed here.
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“selective reflection effect” mentioned above, is very distinct: The lower the frequency
components of a partial wave the more down-slope they are reflected with the consequence of
the relative shifting to be seen in the graph. Thus actually the nodes_I appear rather close to
IP except for the longest two partial waves comprising the frequency range 0<f<0.375Hz. It
should be mentioned here that at slopes 1:2 measurements could be performed yet close to IP.

0,50 —— - —

. Energy Smooth Slope

040 +

0,35 -

cm*cm*HZ
[=1
[}
wh

1 2 3 4 5§ B 7 8.9 10 11 142 13 14 15 16 17 18 18 20 21 22 23 24 25 26 27T 28 28 30 ¥
Toe of Sloping StructueT‘ GAUGE STATION NUMBERS (Distances 0 1m)

oss | ENErgy Hollow Slope

cm*cm*HZ

0,00 E
0 1 2 3 4 5 B8 7 B,8 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 20 30 A

Toe of Sloping Structure GAUGE STATION MUMBERS (Distances 0.1m)

B0,0-0,35 m0,35- 0,375 D0375-04625 [04625-04875 MO0,4875-051875 MO,51875 - 0,56875
®0,56875 - 05875 00,5875 - 0,600 0,500 -_EI',II33125 WO 68175-0,725 0O0,725- 5,000
Fig.18: Smooth slope: Evidence of partial waves with extreme values of energy
documenting distinct loops and nodes.
Hollow Structure: Evidence of partial waves with much less energy.
Distinct phase differences between respective partial waves at both slopes.

Apparently at the hollow structure the loops and nodes are much less distinct, but still can be
identified. Comparing, however, the energy contents of the respective partial waves in front of
the two slopes, the differences not only of the magnitudes but also of the phases are
impressive. The distances of corresponding partial wave phases can be taken from the graph.
By way of example with regard to the frequency range 0.4875Hz < £ < 0.51875Hz, whose
loops and nodes in the graph are marked by arrows, the distance of corresponding phase
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points is 0.70m. Applying 0.95m as the distance between node and loop (also taken from the
graph) the phase difference can easily be figured out to be Ay = 66°.°

With regard to reflection coefficients (to be further analyzed in chapter 7), estimates
depending on frequency, calculated in using the above method, are shown yet in Fig.19.
Hence, in the frequency range 0.36Hz<{f<0.7Hz there are reflection coefficients
0.5 < C;<0.85 attached to the smooth slope and 0.1 < C,< 0.3 to the hollow structure.

1.00
+ Smooth Slope 1:2
0.90 Pt

* ® Big Hollow Cubes 1:2
0.80 e

0.70 Tl
0.60 oy

0.50

0.40

0.30 "

Reflection Coefficient G [-]

0.20 T

0.10 T

0.00
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
Frequency [Hz]

Fig.19: Spectral reflection coefficients C, i(f) of partial waves at slopes 1:m = 1:2 plotted
with the mean values of corresponding frequency ranges.

Similar to Fig.10 reflection coefficients for the smooth slope decrease with frequency
increasing. Contrary the trend of coefficients for the hollow structure is rather neutral.

In contrast to the smooth slope, above the hollow structure, there is a loop documented
between stations 5 and 0 due to increasing energy, see Fig.18. This increase is, however,
combined with a shifting of energy from lower frequencies 0 <f<0.46875Hz to higher
frequencies 0.4875Hz < £ < (0.725Hz and is in accordance with the visual observation of high
turbulent flow into and out of the hollow structure respectively.

Thus it can be supposed that besides energy dissipation at the hollow structure, also the
magnitude of the observed phase difference is responsible for the very low reflection
coefficients to be found. By contrast, at a slope 1:3 a comparable phase difference is only
Ay = 18° < 66° attached to a similar frequency range 0.49Hz << 0.54Hz. Although the
reduction of reflection coefficients is impressive for the hollow revetment 1:3 (Fig.10) also,
the collapsing breaker occurring at that structure is rather different from surf characteristics at
the hollow structure inclined 1:2.

? In the same frequency range, the minimum energy value at station 6 may be traced back to the impermeable in-
place step to be seen from Fig.17. This can also not be discussed here.
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6. Further considerations on the occurrence of a
phase jump between incident and reflected waves.

In the 1990ies the author had already mentioned the interaction process between the washing
movement on the slope face and the particle movement, induced by the incident waves, with
the consequence of a possible resonance between them [1]. Naturally for this purpose not only
the matching of the frequencies is important but also the relative phases of both movements.
In this connection special relevance may be attached to the position of the partial clapotis in
front of the sloping structure. In the following it will be shown that the position of the later
depends on the phase difference between incident and reflected wave.

In case that - differing from the conventional treatment - the reflected wave is distinguished
not only by a wave height H, < H; but also by a different phase ¢ with respect to the incident
wave, an appropriate reflection coefficient C,= f(H,/H;, A¢) can be specified for cosine waves
by way of a parametric representation.” In doing so the function C,=f(A¢) had been
calculated for parameters 0.1 <H,/H;< 1.0, where individual values for given phase
differences Ap come from Healy’s formula (1953).

C =Moo =Fuin pere H =H,+H, and H,, =H, —H, (7)
rr-{4/. +H

max min

For the theoretical case of two opposing cosine waves of equal wave length (or period) an
example of the calculation scheme for the parameter H,/H;=0.7 and phase difference
A = 1/4 is contained in Fig.20.

Reflection Coefficient C, = f(H/H,= 0.7, Ag = n/4)
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Fig.20: Calculation scheme for reflection coefficient C,= f(H,/H;= 0.7; Ap=n/4)

As shown in the graph the phase difference A produces a displacement of the partial clapotis,
whose loops and nodes are characterized by the extreme values of the functions Hp,x and

? A complex reflection coefficient may be formulated alternatively.
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Huin. Additional consideration of the phase distance A¢ in this case causes a change of the
reflection coefficient from C,= f(H,/H;) = 0.7 to C,= f(H/H;, Ap) =0.377.

The entirety of reflection coefficients C,= f(H,/H;, Ap) for parameters 0.1 <H/H;< 1.0 and
phase differences 0° <A@ <180° is plotted in Fig. 21. Outside this range reflection
coefficients can be found by mirroring the data at the axis A¢ =0° and at the axis at
Ag = 180° respectively.

It should be noted here that due to the used definition in this presentation negative reflection
coefficients are found for phase distances 90° < A < 180°.

Considering at first the theoretical case of equal cosine wave heights H; = H; (curve parameter
H/Hi= 1), the reflection coefficient C,=1.0 at Ap=0° is attached to a perfect clapotis
comprising of a loop at the point of reflection (e.g. at a vertical wall), whereas the phase
difference Ap = 180° delivers a negative reflection coefficient C,=-1.0.

Reflection Coefficient C, = f(H,/H;, Ag)
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Fig.21: Reflection coefficients C, = f(H,/H; , A@) in the range of parameters
0.1 < H,/H;< 1.0 and phase distances 0° < Ap < 180°.

The later, however, also stands for a perfect clapotis, but in this case with a perfect node
existing at the point of reflection and thus a phase jump is produced.

Considering both of the clapotis waves separately apart from their originating incident and
reflected waves, their loops appear shifted by an angle of A = 90° (n/2).

Accordingly for A changing from 0° to 180°, the transfer from the case of reflection without
phase jump to the case of reflection with phase jump can be watched, meaning that the wave
crest is reflected as a wave trough and vice versa.

At the phase difference Ap = 90° there is C, = 0, i.e. no reflection exists.

Phase differences 0° < Ap <90° and 90° < A < 180°, however, represent partial standing
waves, which can be considered a mixture of progressive and standing waves. In those cases
imperfect nodes are located at distances 0 < a; < L; /4 from IP.

Of course there are also partial standing waves at phase differences 0° and 180°, if parameter
H/H;< 1.
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Hence, the general conclusion to be drawn from Fig.21 consists in the statement that a phase
difference between incident and reflected wave reduces the magnitude of the reflection
coefficient the more the closer it is to 90° (n/2).

Determining reflection coefficients from the envelopes of partial standing waves or from the
above energy lines respectively, thus it is important to decide, which kind of partial clapotis
really exists. So, according to the investigations on hand, one should act on the assumption
that there exists negative reflection at the two smooth slopes 1:3 and 1:2 with mean reflection
coefficients C,;~ -0.35 (Fig.10) and C, = -0.75, (Fig.19) respectively.

Also imperfect negative reflection would exist at the hollow slope 1:3, expressed by the mean
reflection coefficient C,~-0.2, (Fig.10), while there is imperfect positive reflection at the
hollow structure inclined 1:2 with a mean reflection coefficient C.~ +0.2 (Fig.19), due to the
imperfect loop close to IP (see Figl18).

A quantitative statement on how much the phase difference A¢ is responsible for the excellent
result with this kind of hollow structure, is given exemplarily for a selected frequency range
in chapter 7.

Contrary without any information on the positioning of the partial clapotis with reference to
IP, the reflection coefficient would be ambiguous. This is indicated e. g. for a value C, = 0.2
and phase differences 0° < Ap < 90° by the markers on the curves in the lower part of Fig.22.

Reflection Coefficient C, and Energy Losses C,.,2
of monochromatic water waves at coastal structures
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Fig.22: Lower Family of Curves: Reflection coefficients C, = f(H,/H; , Ag);
Upper Family of Curves: Absorption loss C.2 = f(H/H;, AQ).

In the present case of non-inundated structures the linkage between reflection coefficient C,
and absorption coefficient C, is normally established based on the energy conservation law as
follows:

The energy of incident waves E; is equal to the sum of reflected energy E; and absorbed
energy E,.

Ei = Er + Ea (8)

With reference to the phenomenological model of wave breaking, specified in the
introduction, it has to be clarified at this place that the fraction of reflected energy E, is
originated right during the process of wave breaking and the fraction of absorbed energy E,
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comprises the total energy dissipation at breaking and at further interaction with the sloping
structure, though the breaking process itself is induced by the structure.

As wave energy is proportional to the square of the wave height, follows

H>=H}+H. 9)

and division by Hi* delivers the relationship between the coefficients squared, substituting the
respective energy fractions.

1=C’+C; (10)

Hence the upper family of curves in Fig.22 comprises the absorption losses

C.2=1- G2 = f(H/H;, Ag).

Simply it is shown here that according to the overall decrease of reflection coefficients (lower
family of curves) with phase difference in the range 0° < Ap < 90° there is an increase of the
absorption losses up to 100%.

Energy Losses C,” = f(H,/H;, Ap) , C,,” = f(Hr/Hi, Ap)
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Fig.23: Upper Family of Curves: Total absorption loss C,> = f(H,/H;, Ag).
Lower Family of Curves: Fraction of absorption loss Cap2 = f(H,/H;, Ag)
= Caz- Caz(A(p=0) due to phase difference.

In order to (further) clarify the effect of the phase difference, in Fig. 23 the total absorption
loss Ca2 =f(H/H;, Ap) is contrasted by the rate of absorption loss Cap2 =f(H/H;, Aop)
=Ca - Cf(Acpzo) (lower family of curves), which will result, if Ca0’= Caz(A(p:O) is subtracted
from the former.

Thus in the case of H,/H;= 0.7 e.g. the phase difference Ap = 90° causes nearly half (49%) of
the total absorption loss. The phase difference Ap=30°, however, produces a balance as

follows:
Cr 2 +Ca” + Cop” = 26% + 51% + 23% = 100% (11)

Then in this case the rate of absorption due to the phase difference (23%) is approximately
equal to the reflected energy (26%), while absorption due to the ratio of wave heights is about
twice that of the former two (51%).
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7. Estimates of the Phase Difference Ap Influencing
the Reflection Coefficient C.=f(H/Hi Ap)

In the following estimates of the influencing values H,/H; and A on the reflection coefficient
C,= f(H/Hi, Ao) are presented basing on Fig.21 and on particular results mentioned above.

In doing so, reference is made to partial waves of frequency range 0.48Hz < f < 0.56Hz for
slopes 1:3 and to partial waves of similar frequency range 0.4875Hz << 0.518750Hz for
slopes 1:2.

In the present case the initial condition of a phase jump (according to a phase difference
A = 180° between incident and reflected waves) may be accurate enough for both smooth
slopes. Hence negative reflection exists for slope 1:3 with a reflection coefficient of C, = -0,41
(see Fig.10 and marker in Fig.21) and for slope 1:2 with a reflection coefficient C; =~ -0,8 (see
Fig.19 and marker in Fig.21).

Provided that phase jumps A@ < 180° also at partial reflection cause a node shift of
Ad = Ag/2, the node shifts Ay, to be taken from evaluations analog to Fig.18, can be attached
to phase differences Ao as follows:

The node shift related to the point of origin is A = 90°-Aw.

Hence Agp = 2(90°-Ay). (12)

With the reflection coefficient C.= f(H,/H;, A@) known from a proper evaluation scheme, the
parameter H/H; can be found from the family of curves of Fig.21 to be the curve running
through point P(Ao, C,).

As for the hollow slope 1:3, the node shift between the respective partial waves is Ay= 18°
leading to a phase difference Ap = 144°.

Together with C,= f(H/H;, Ap) =-0.24 (Fig.08) follows H,/H;~ 0.30 (see marker in Fig.21).
Hence the absolute reduction due to phase shift contained in the reflection coefficient is
0.30-0.24 = 0.06 or 20%.

As for the hollow structure 1:2, the node shift between the respective partial waves is
Ay= 66° leading to a phase difference Ap = 48°.

Together with C,= f(H,/H;, Ap) =+0.17 (Fig.19) follows H,/Hj~ 0.26 (see marker in Fig.21).
Hence the absolute reduction due to phase shift contained in the reflection coefficient is
0.26-0.17 = 0.09 or about 35%.

8 Conclusions
(Hypothesis and Further Observations)

The above findings especially with reference to Fig.21 are giving cause to a hypothesis “On
the Reflection of Partial Standing Waves at Inclined Sloping Faces”.

Contrary to the perfect standing wave at a vertical wall due to retro-reflection without a phase
jump (i.e. positive reflection characterized by a node distance a = L/4 from the wall; C.= 1.0;
A@ = 0°) there is another kind of retro-reflection with a phase jump at a wall inclined by a
certain angle (i.e. negative reflection characterized by a node at the reflecting wall; C,= -1.0;
Ag = 180°). Both types of clapotis should be considered as theoretical limiting cases of
reflection excluding any friction effects at interfaces (water — air and water — solid
respectively).
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Moreover cases of partial reflection characterized by C,= f(H,/H;= 1; 0° < Ap < 180°) should
be labelled as theoretic too, provided that energy dissipation processes not only exhibit a
change of the reflected wave height but also a change of the reflected wave phase.

All the remaining cases of partial reflection, however, with parameters 0 < H,/H;<1 and
0° < Ag < 180° are due to different kinds of energy dissipation processes.

With respect to the shapes of breaking waves, it can be supposed in this context that not only
the Iribarren number for surf similarity & = tana/N(H/L) but also the phase difference A¢p may
be adequately important.

At least at the steep slopes treated here, comprising smooth or nearly smooth surfaces, there
exists a negative reflection, which, however, needs further specification with respect to the
slope angle.

The distinct negative reflection effect can be attached most probably to surging waves, but
may also be responsible for the plunging breaker type to occur. Moderate negative reflection
occurred at hollow slopes producing collapsing breakers, while there was no distinct breaker
type to be identified at big hollow cubes accounting for very low positive reflection
coefficients.
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