

Berechnung nach Miche-Rundgren

Belastung einer vertikalen Wand durch eine Clapotis

Druckspannungen am Kamm der Clapotis

Druckspannungen am Tal der Clapotis

© Büsching, F.: Küsteningenieurwesen

2002/09.4

nach Shore Protection Manual, Vol.II U.S. Army CERC, 1977

mit
$$H_a = H_i$$
; $C_R = \chi$

 $C_r = \frac{H_r}{H_a} = \frac{H_r}{H_i} = 0.9$

© Büsching, F.: Küsteningenieurwesen

2002/09.5

MICHE - RUNDGREN: (exakt)

Resultierende Wellenkräfte [kN/m] und Einspannmomente [kNm/m bezüglich der extremen Auslenkungen für die Wellenphasen des Kammes (c = crest) und des Tales (t = trough). Eingangswerte: $20 m \le L \le 150 m$ d = 9,5m H = 2m $\frac{H_r}{H_s} = \frac{H_r}{H_s} = 1,0$ $\gamma = 10 kN / m^3$

1	2	3	4	5	6	7	8	9	10	11	12	13
L	Т	Hi/gT^2	ho/Hi	ho	$Fc/\gamma d^2$	Fc	$Ft/\gamma d^2$	Ft	$Mc/\gamma d^3$	Mc	$Mt/\gamma d^3$	Mt
[m]	[s]	[-]	[-]	[m]	[-]	[kN/m]	[-]	[kN/m]	[-]	[kNm/m]	[-]	[kNm/m]
			*		*		*		*		*	
20	3,55	0,0156	0,31	0,62	0,54	487,4	0,39	352,0	0,195	1671,9	0,115	986,0
30	4,42	0,0102	0,225	0,45	0,57	514,4	0,385	347,5	0,230	1972,0	0,110	943,1
40	5,27	0,0072	0,20	0,40	0,62	559,6	0,37	333,9	0,250	2143,4	0,105	900,2
50	6,14	0,0053	0,19	0,38	0,65	586,6	0,36	324,9	0,270	2314,9	0,103	883,1
60	7,05	0,0040	0,20	0,40	0,68	613,7	0,355	320,4	0,280	2400,7	0,100	857,4
70	7,97	0,0032	0,22	0,44	0,70	631,8	0,354	319,5	0,290	2486,4	0,100	857,4
80	8,91	0,0025	0,25	0,50	0,72	649,8	0,36	324,9	0,305	2615,0	0,100	857,4
90	9,87	0,0021	0,29	0,58	0,74	667,9	0,36	324,9	0,310	2657,9	0,105	900,2
100	10,84	0,0017	0,33	0,66	0,76	685,9	0,36	324,9	0,320	2743,6	0,105	900,2
110	11,82	0,0014	0,37	0,74	0,77	694,9	0,37	333,9	0,330	2829,3	0,107	917,4
120	12,80	0,0012	0,42	0,84	0,79	713,0	0,385	347,5	0,340	2915,1	0,112	960,3
130	13,79	0,0011	0,50	1,00	0,80	722,0	0,39	352,0	0,350	3000,8	0,114	977,4
140	14,79	0,0009	0,60	1,20	0,815	735,6	0,40	361,0	0,360	3086,6	0,120	1028,9
150	15,79	0,0008	0,68	1,36	0,82	740,1	0,405	365,5	0,368	3155,1	0,125	1071,7

© Büsching, F.: Küsteningenieurwesen

2002/09.6

* Ablesungen (Shore Protection Manual, Vol.II U.S. Army CERC, 1977

Sainflou: (Näherungswerte 2. Ordnung, vergl Tabelle).												
F	$\boldsymbol{F} = \boldsymbol{y}_c \cdot (\boldsymbol{\gamma} \cdot \boldsymbol{d} + \boldsymbol{p}_1)$					$M - F Y_c$ <u>zum Vergleich</u>						
C C			$\frac{1}{3}$ <u>Antonelli:</u> (hydrostatisch)									
F_t	$= \frac{y_t}{y_t}$	$\frac{\cdot (\gamma \cdot c)}{2}$	1 – p ₁)	$M_t =$	$= F_t \cdot$	$\frac{\mathbf{y}_{t}}{3} \begin{bmatrix} \mathbf{F}_{t} \\ \mathbf{F}_{t} \end{bmatrix}$, = 661,2 = 281,2	5 kN / m 5 kN / m	$M_{\rm c} = 253$ $M_t = 707$	34,8kNm / m ',1kNm / m	
1	2	3	4	5	14	15	16	17	18	19	20	
L	Т	Hi/gT^2	ho/Hi	ho	yc	yt	$\mathbf{p}_1 = \mathbf{p}_s$	Fc	Ft	Mc	Mt	
[m]	[s]	[-]	[-] *	[m]	[m]	[m]	[kPa]	[kN/m]	[kN/m]	[kNm/m]	[kNm/m]	
20	3,55	0,0156	0,31	0,62	12,12	8,12	2,017	587,9	393,9	2375,2	1066,1	
30	4,42	0,0102	0,225	0,45	11,95	7,95	5,369	599,7	399,0	2388,8	1057,3	
40	5,27	0,0072	0,20	0,40	11,90	7,90	8,562	616,2	409,1	2444,2	1077,2	
50	6,14	0,0053	0,19	0,38	11,88	7,88	11,103	630,3	418,1	2495,8	1098,1	
60	7,05	0,0040	0,20	0,40	11,90	7,90	13,012	642,7	426,7	2549,3	1123,5	
70	7,97	0,0032	0,22	0,44	11,94	7,94	14,429	653,3	434,4	2600,1	1149,8	
80	8,91	0,0025	0,25	0,50	12,00	8,0	15,486	662,9	441,9	2651,7	1178,5	
90	9,87	0,0021	0,29	0,58	12,08	8,08	16,285	672,2	449,6	2706,6	1210,9	
100	10,84	0,0017	0,33	0,66	12,16	8,16	16,899	680,3	456,6	2757,7	1241,8	
110	11,82	0,0014	0,37	0,74	12,24	8,24	17,378	687,8	463,0	2806,0	1271,7	
120	12,80	0,0012	0,42	0,84	12,34	8,34	17,757	695,7	470,2	2861,7	1307,2	
130	13,79	0,0011	0,50	1,00	12,50	8,50	18,062	706,6	480,5	2944,3	1361,5	

© Büsching, F.: Küsteningenieurwesen

18,310

18,515

719,5

730,0

492,9

502,9

8,70

8,86

2002/09.7

1429,4

1485,1

3046,0

3128,8

* Ablesungen (Shore Protection Manual, Vol.II U.S. Army CERC, 1977

12,70

12,86

140

150

14,79

15,79

0,0009

0,0008

0,60

0,68

1,20

1,36

© Büsching, F.: Küsteningenieurwesen

Momente

Mt (MR)

Mt (A)

Mc (MR)

Mc (A)

© Büsching, F.: Küsteningenieurwesen

Periode T[s]

© Büsching, F.: Küsteningenieurwesen

© Büsching, F.: Küsteningenieurwesen

© Büsching, F.: Küsteningenieurwesen